Assessment of Iodine Deficiency Disorders and Monitoring their Elimination :

A guide for programme managers, Second Edition. ICCIDD/UNCF/ WHO, 2001

 

 
 

 

 

 

 


Continued  . . .

 

 

Method 3 - an extremely large number of schools

 

In very large populations, it may not be possible or efficient to select  schools using either the PPS or the systematic  selection method. For example, Szechwan Province in China has a  population of  approximately  100 million.  Even if a list of  schools  were available  at the provincial level, it would take much  time  and effort to select schools using either of these methods.

 

Accordingly,  another  approach may be more  appropriate.  First, select districts using th PPS  method.  Develop a listing of  the districts, their populatioins, and cumulative populations similar to  the  PPS selection described earlier.   Next,  determine  the number  of schools to survey, based on the cumulative  population using PPS.

 

For  districts with one or more clusters to be  selected,  select schools  in  each  district using a  random  number  table.   For example,  if  a district has 200 schools, number them from  1  to 200.   Then,  randomly select a number from 1 tp  200  using  the table.   If two schools are to be selected, then randomly  select two  numbers.   Finally, and while not  technically  correct,  it would  be acceptable to analyse the school-based data as  through the schools were selected using PPS methodology.

 

 

Other possibilities

In  situations  where male and female children  attend  the  same school,  the  selection of schools and pupils would  be  same  as discussed  above.  In situations where males and  females  attend separate  schools,  when  a school of one  sex  is  selected  the nearest school of the opposite sex should also be surveyed.

 

For  example, a survey is to be performed in an area where  males and  females attend separate schools.  Thirty schools are  to  be selected,  and twenty pupils sampled in each.  When  an  all-male school  is visited, inforamtion should be collected on  ten  male pupils.   Then,  the  nearest  female  school  is  visited,   and information collected on ten female pupils.

 

Reference

Adapted  from:  Sullivan  KM, May S, Maberly  G.  Urinary  iodine assessment:  a manual on survey and laboratory methods,  2nd  ed. UNICEF, PAMM, 2000.

 

Annex 5   Summarizing urinary iodine data: a worked example

 

Some actual urinary iodine data from schoolchildren in  Cameroon, following  the implementation of universal salt  iodization,  are presented in the first (left) column of Table 14.  The data  have been  entered into a spreadsheet on a personal computer for  ease of  calculation. However, with small numbers such as  these,  the calculations are relatively easily performed by hand.

 

Steps in processing the data

1.   Before proceeding, carefully check the data entered  against the original.  Ensure that the same number of data points (n) are present, and look for any anomalous results.

 

2.  Next, sort the data from highlight to lowest, or  vice-versa.  The spreadsheet will do this automatically.  (In Microsoft Excel, use  the  Data Analysis function on the Tools  menu,  and  select "Rank and Percentile".)  The sorted data are shown under  "value" in  Table 14, starting with the highest value. The  next  columns show the rank and percentile for  each data point.

 

3.  The median is the middle value of the ranked data.  In  other words, it is the value of the (n + 1) / 2th value.  In this case, there are 98 data points, so the median is the value of (98 +  1) divided  by 2 = 49.5th data point.  Accordingly, use  the  middle point  between  the  49th  and 50th values:  122  and  121  ug/l, respectively.   The  mid-point is 121.5 ug/l, so  the  median  is 121.5 ug/l.

 

4.   Next, calculate the number of values below 100, 50,  and  20 ug/l, respectively.  The ranking will allow this to be done  very easily.   In  this case, there are 33 values below  100  ug/l,  6 below 50 ug/l, and one below 20 ug/l. These should be  calculated as percentages: 33 of 98 is 33.7%, 5 of 98 is 5.1% and 1 of 98 is 1.0%.

 

5.  Check if any values are above 500 ug/l.  There is one (1.0%).

 

6.   The 20th and 80th percentiles may are readily  observed,  or automatically    displayed   using   the   PERCENTILE    function [PERCENTILE  (range of cells, 0.2)].  The 20th percentile  (P20) is 82.4 ug/l and P80 is 191.8 ug/l.

 

7.   The  "Descriptive Statistics" function of Data  Analysis  in Excel provides all statistics shown: select "Summary  Statistics" in the dialogue box.  Note that the mean is much higher than  the median, indicating that the distribution is heavily skewed to the right.   This is also shown by the much greater distance  between P80 and the median, compared to that between P20 and the median.

 

8.   In addition, the data can be shown as a histogram using  the "Histogram"  function  of  Data Analysis  in  Excel.   Convenient ranges  need to be chosen for making the frequency  distribution, which  will  be  reflected  in the height  of  each  bar  of  the histogram.   50  ug/l is suggested (i.e., the first bar  is  0-49 ug/l, the second 50-99 ug/l, the third 100-149 ug/l, and so  on).  Appropriate  modifications can be made using "Chart Options"  and related functions.  The histogram is shown in Figure 4.  A  fully detailed description for constructing that histogram is not given here.

 

Table 13: Summary of results

 

Number

98

Median

121.5 ug/l

20th percentile

82.4 ug/l

80th percentile

191.8 ug/l

 

 

Distribution:

 

<100 ug/l

33.7%

<50 ug/l

5.1%

<20 ug/l

1.0%

>500 ug/l

1.0%

 

 

 

Table 14: Urinary iodine data in Cameroon schoolchildren following salt iodization

 

Ul(ug/l)

Value

Rank

Percent

Descriptive

Statistics

141

535

1

100.00%

 

 

138

480

2

98.90%

Mean

142.7449

138

395

3

97.90%

Standard error

8.877338

154

340

4

96.90%

Median

121.5

162

320

5

95.80%

Mode

138

 26

295

6

94.80%

St. dev.

87.88117

63

273

7

92.70%

Sample variance

7723.099

111

273

7

92.70%

kurtosis

5.463542

120

264

9

91.70%

Skewness

1.970291

65

261

10

90.70%

Range

525

190

240

11

89.60%

Minimum

10

142

232

12

87.60%

Maximum

535

138

232

12

87.60%

Sum

13989

95

224

14

86.50%

Count

98

273

208

15

85.50%

Confidence

 

132

200

16

83.50%

level (95.0%)

17.61905

164

200

16

83.50%

 

 

66

198

18

82.40%

 

 

158

193

19

80.40%

 

 

114

193

19

80.40%

 

 

118

190

21

79.30%

 

 

232

188

22

78.30%

 

 

145

180

23

77.30%

 

 

94

174

24

76.20%

 

 

90

164

25

75.20%

 

 

122

162

26

74.20%

 

 

114

160

27

73.10%

 

 

340

158

28

72.10%

 

 

193

154

29

71.10%

 

 

135

150

30

70.10%

 

 

261

146

31

68.00%

 

 

75

146

31

68.00%

 

 

63

145

33

67.00%

 

 

 

Table  14:  Urinary ioidine salt in Cameroon  schoolchildren following salt iodization (continued)

 

Ul (ug/l)

Value

        Rank

Percent

Descriptive Statistics

246

144

34

65.90%

 

142

142

35

63.90%

 

174

142

35

63.90%

 

121

141

37

62.80%

 

395

140

38

60.88%

 

320

140

38

60.80%

 

240

138

40

57.70%

 

140

138

40

57.70%

 

66

138

40

57.70%

 

146

135

43

56.70%

 

115

133

44

55.60%

 

82

132

45

54.60%

 

82

128

46

53.60%

 

535

124

47

52.50%

 

74

122

48

50.50%

 

35

122

48

50.50%

The median lies half-way

 between these two values

83

121

50

49.40%

 

104

120

51

46.30%

 

64

120

51

46.30%

 

208

120

51

46.30%

 

49

118

54

45.30%

 

89

117

55

44.30%

 

109

115

56

42.20%

 

106

115

56

42.20%

 

32

114

58

40.20%

 

128

114

58

40.20%

 

232

111

60

39.10%

 

88

110

61

38.10%

 

115

109

62

37.10%

 

144

108

63

36.00%

 

86

106

64

35.00%

 

150

104

65

34.00%

 

224

96

66

32.90%

<100 UG/L

92

95

67

30.90%

 

180

95

67

30.90%

 

193

94

69

29.80%

 

 

 

Table  14:   Urinary iodine data in Cameroon schoolchildren following salt iodization (concluded)

 

Ul (ug/l) s

Value

Rank

Percent      

Descriptive Statistics

133

92

70

29.80%

 

80

90

71

26.80%

 

87

90

71

26.80%

 

96

89

73

25.70%

 

120

88

74

24.70%

 

146

87

75

22.60%

 

160

87

75

22.60%

 

124

86

77

21.60%

 

90

83

78

20.60%

 

10

82

79

18.50%

 

55

82

79

18.50%

 

108

80

81

16.40%

 

480

80

81

16.40%

 

80

75

83

15.40%

 

122

74

84

14.40%

 

198

66

85

12.30%

 

200

66

85

12.30%

 

87

65

87

11.30%

 

200

64

88

10.30%

 

188

63

89

8.20%

 

54

63

89

8.20%

 

273

55

91

7.20

 

120

54

92

6.10%

 

140

49

93

5.10%

<50 ug/l

110

42

94

4.10%

 

42

35

95

3.00%

 

95

32

96

2.00%

 

117

26

97

1.00%

 

295

10

98            

.00%

<20 ug/l

 

Figure 4:  Frequency table and histogram to show distribution  of urinary iodine values after iodization in Cameroon

 

Urinary iodine (ug/l)

Frequency

0-49

6

50-99

27

100-149

35

150-199

13

200-249

7

250-299

5

300-349

2

350-399

1

400-449

0

450-499

1

500-549

1

550-599

0

 

 

Table  10:   Selection of communities in El Saba  using  the  PPS method

 

Name

Population

Cumulative population

Cluster

 

Utural

600

600

 

 

Mina

700

1,300

1

 

Bolama

350

1,650

2

 

Taluma

680

2,380

3

 

War-Yali

430

2,810

 

 

Galey

220

3,030

 

 

Tarum

40

3,070

 

 

Hamtato

150

3,220

4

 

Nayjaff

90

3,310

 

 

Nuviya

300

3,610

 

 

Cattical

430

4,040

5

 

Paralai

150

4,190

 

 

Egala-kuru

380

4,570

 

 

Uwarnapol

310

4,880

6

Hilandia

2,000

6,880

7

 

 

 

8

Assosa

750

7,630

9

 

 

 

 

Dimma

250

7,880

 

Aisha

420

8,300

10

Nam Yao

180

8,480

 

Mai Jarim

300

8,780

 

Pua

100

8,880

 

Gambela

710

9,590

11

Fugnido

190

9,880

12

Degeh Bur

150

10,030

 

Mezan

450

0,480

 

Ban Vinai

400

10,880

13

Puratna

220

11,100

 

Kegalni

140

11,240

 

Hamali-Ura

80

11,320

 

Kameni

410

11,730

14

Jiroya

280

12,010

 

Yanwela

330

12,340

 

Bagvi

440

12,780

15

Atota

320

13,100

 

Kogouva

120

13,220

16

Ahekpa

60

13,280

 

Yondot

320

13,600

 

Nozop

1,780

15,380

17

 

 

 

18

Mapazko

390

15,770

19

Lotohah

1,500

17,270

20

Voattigan

960

18,230

21

 

 

 

22

Plitok

420

18,650

 

Dopoltan

270

18,900

 

Cococopa

3,500

22,400

23

 

 

 

24

 

 

 

25

 

 

 

26

 

 

 

27

Famegzi

400

22,820

 

Jigpelay

210

22,840

 

Mewoah

50

22,890

 

Odigla

350

23,240

28

Sanbati

1,440

24,680

29

Andidwa

260

24,940

30

 

 

 

Click to continue . . . .

 

TOP

 

BACK