Assessment of Iodine Deficiency Disorders and Monitoring their Elimination :

A guide for programme managers, Second Edition. ICCIDD/UNCF/ WHO, 2001

 

 
 

 

 

 

 


Continued . . .

 

 

School-based surveys

If  a  school-based survey is to be performed,  the  Ministry  of Education should be contacted to obtain a listing of all  schools with children of the appropriate age for the survey.  Because the age range for the survey is 6-12 years, the grades in which these children  are  likely  to  be  enrolled  should  be   determined.  Ideally, the Ministry of Education will have such a listing.

 

If  one nationwide survey is performed, a listing of schools  for the  entire  naiton  is needed.   If  subnational  estimates  are required, then a listing of the schools for each subnational area is   needed.   If  enrolment  information  for  each  school   is available,  the  PPS  method should be used  for  selection.   If enrolment information is not available, then systematic  sampling can be performed.

 

Selecting schools

When performing school-based surveys in a geographical area,  the first questions are:

 

*  Is there a list of all schools in the geographic area with the appropriate age range?

 

*  If there is a list of schools, is the number of pupils in each school known?

 

In most areas, a list of schools and their respective  enrolments is  available.   Ensure  that  there  are  the  same  number   of grades/levels  in  the  schools.   If  a  list  of  schools   and enrolments  is  available,  the selection of  schools  should  be performede   using  the  PPS  method  described   for   selection communities.   If there is a list of schools but  the  enrolments are   not  known,  schools  can  be  selected  using   systematic selection.

 

Using sytematic selection, rather than PPS, complicates  analysis somewhat.   However, if enrolment information cannot be  obtained easily  there  may be no alternative. If there  is  an  extremely large  number  of  schools in an area, or if  a  listing  of  all schools  does  not  exist,  another method  can  be  used.   This alternative method is described later in these guidelines.

 

Method 1 - schoold when their enrolments are known

In  this situation the PPS method for selection  communities,  as described  earlier  in  this Chapter,  should  be  used.   First, generate  a  list of schools similar to that shown in  Table  11.  Second,  determine  the cumulative  enrolment.   Finally,  select schools  using  the same PPS method as  described  for  selecting communities (see Table 10).

 

Table 11: Selection of schools using the PPS method

 

     School

Enrolment

Cumulative enrolment

     Utural

600

600

     Mina

700

1,300

     Bolama

350

1,650

 

 

Method 2 - a list of schools is available, but enrolments are not known

 

When  a  list of schools is available but the enrolment  of  each school  is not known, the systematic selection method  should  be employed as follows.

 

*  Obtain a list of the schools and number them from 1 to N  (the total number of schools).

 

*  Determine the number of schools to sample (n), usually thrity.

 

*   Calculate  the "sampling interval" (k) by N/n  (always  round down to the nearest whole integer).

 

*  Usine a random number table, select a number between 1 and  k.  Whichever  number is randomly selected, refer to the school  list and include that school in the survey.

 

*  Select every kth school after the first selected school.

 

Example of systematic selection of schools

 

For  illustrative  purposes, Table 12 lists fifty  schools.   The following method would be used to select eight schools:

 

Step one:      There are fifty schools, therefore N = 50.

 

Step  two:     The  number  of  schools  to  sample  is  eight;   therefore n = 8.

 

Step three:    The sampling interval is 50 / 8 = 6.25; round down    to the nearest whole integer, which is 6; therefore,

               k = 6.

 

Step four:     Using a random number table, select a number  from 1 to (and including) 6. In this example, suppose the number selected had been  3.   Accordingly, the first  school  to  be selected  would  be the third school on the list, which  in  this example is Bolama.

 

Step  five:    Select every sixth school  thereafter;  in  this example, the selected schools would be the 3rd, 9th, 15th,  21st, 27th, 33rd, 39th, and 45th schools on the list.

 

In some circumstances, this method might result in the  selection of  more  than  the number needed.  In  the  above  example,  for instance, had the random number chosen in Step four been 1 or  2, then  nine  schools would have been selected rather  than  eight.  This is because the value for K was rounded down from 6.25 to 6.

 

In  this situation, to remove one school so that only  eight  are selected,  again go to the random number table to pick a  number.  The school that corresponds to that random number is removed from the survey.

 

To analyse properly the data collected using sytematic  sampling, additional  information  needed  would  include  the  number   of eligible pupils in each school. Note that usually thrity clusters are  selected; the eight indicatedin Table 12 have been  selected in this example for illustrative purposes only.

 

Table  12:  Selection of schools

using the  systematic  selection method

 

School

 

Selected

School

Selected

1   Utural

 

26  Ban Vinai

 

2   Mina

 

27  Puratna

Y

3   Bolama

Y

28  Kegalni

 

4   Taluma

 

29  Hamali-Ura

 

5   War-Yali

 

30  Kameni

 

6   Galey

 

31  Kiroya

 

7   Tarum

 

32  Yanwela

 

8   Hamtato

 

33  Bagvi

Y

9   Nayjaff

Y

34  Atota

 

10  Nuviya

 

35  Kogouva

 

11  Cattical

 

36  Ahekpa

 

12  Paralai

 

37  Yondot

 

13  Egala-Kuru

 

38  Nozop

 

14  Uwarnapol

 

39  Mapazko

Y

15  Hilandia

Y

40  Lotohah

 

16  Assosa

 

41  Voattigan

 

17  Dimma

 

42  Plitok

 

18  Aisha

 

43  Dopoltan

 

19  Nam Yao

 

44  Cococopa

 

20  Mai Jarim

 

45  Famegzi

Y

21  Pua

Y

46  Jigpelay

 

22  Gambela

 

47  Mewoah

 

23  Fugnido

 

48  Odigla

 

24  Degeh Bur

 

49  Sanbati

 

25  Mezan

 

50  Andidwa

 

 

 

These  results indicate that there is no iodine  deficiency,  and that  salt  iodization is therfore having  the  required  impact.  There  is no evidence of significant overiodization.  No  changes are  needed on the basis of these results, but further  follow-up is always essential.

 

 

Thyroid size by ultrasonography

Ultrasonography  is a safe, non-invasive  specialized  technique, which  provides  a  more precise measurement  of  thyroid  volume compared  with  palpation.  This becomes  especially  significant

when  the  prevaelence  of  visible  goitres  is  small,  and  in monitoring  iodine control programmes where thyroid  volumes  are expected  to decrease over time.  In the future,  ultrasonography is  poised  to become widely used to assess IDD.   The  technical aspectsw of thyroid ultrasonography are reported in Annex 2.

 

Feasibility

Portable  (weight 12-15 kg) ultrasound equipment with a  7.5  MHz transducer  currently  costs  about  US  $15,000.   A  source  of electricity  is  needed, and the operator needs to  be  specially trained in the technique.

 

Interpretation

Results  of  ultrasonography from a study  population  should  be compared with normative data.  No universal normative values  for thyroid  volume measured by ultrasonography in schoolchildren  of iodine sufficient populations are presently available.

 

Data  from  many  countries have  emphasized  the  importance  of establishing normative values for the popultions being  examined.  Normative   values   for  thyroid  volume   in   iodine   replete

schoolchildren aged 6-15 years should be presented as a  function of  age, sex, and body surface area (BSA) in order to  take  into account the differences in body development among children of the same  age in different countries.  This approach  was  considered potentially  useful  in countries with high prevalence  of  child growth  retardation due to malnutrition with both  stunting  (low height-for-age) and underweight (low weight-for-age).

 

An advantage of the thyroid volume-for-BSA is that the age of the child  is  not required, which in some populations is  not  known with  certanity.  A limitation of the thyroid volume-for  BSA  is

that  it  requires  the collection of  weights  and  heights:  in severely malnourished populations of schoolchildren, 10% or  more may have a BSA below the lowest BSA cut-off of 0.8.

 

Blood constituents

Two  blood  constituents,  TSH (thyroid  stimulating  hormone  or thyrotropin)  and  thyroglobulin (Tg) can serve  as  surveillance indicators.  In a population survey, blood spots on filter  paper or serum samples can be used to measure TSH and/or Tg.

 

Determining   serum  concentrations  of  the  thyroid   hormones, thyroxine   (T4)  and  truuiditgtribube  (T3),  is  usually   not recommended for monitoring iodine nutrition, because these  tests are   more  cumbersome,  more  expensive,  and   less   sensitive indicators.

 

In  iodine  deficiency, the serum T4 is typically lower  and  the serum T3 higher than in normal populations.  However, the overlap is  large enough to make these tests not practical  for  ordinary

epidemiological purposes.

 

 

 

Thyroid stimulating hormone (TSH)

Biological features

 

The  pituitary secretes TSH in response to circulating levels  of T4.   The serum TSH rises when serum T4 concentrations  are  low, and   falls  when  they  are  high.   Iodine  deficiency   lowers circulating T4 and raises the serum TSH, so that iodine-deficient populaions generally have higher serum TSH concentratios than  do iodine-sufficient groups.

 

However,  the  different  is not great and  much  overlap  occurs between   individual  TSH  values.   Therefore,  the  blood   TSH concentration  in  school-age  children  and  adults  is  not   a practical  marker for iodine deficiency, and its routine  use  in school-based surveys is not recommended.

 

In  contrast, TSH is neonates is a valuable indicator for  iodine deficiney.   The  neonates  thyroid  has  a  low  iodine  content compared to that of the adult, and hence iodine turnover is  much higher.   The  high  turnover, which  is  exaggerated  in  iodine deficiency,  requires increased stimulation by TSH.   Hence,  TSH levels  are  increased in iodine deficient  populations  for  the first  few  weeks of life: this phenomenon  is  called  transient hyperthyrotopinemia  (32).

 

The prevalence of neonates with elevated TSH levels is  therefore a  valuable indicator of the severity of iodine deficiency  in  a given   population.    It  has  the   additional   advantage   of highlighting the fact that iodine deficiency directly affects the developing brain.

 

In  iodine sufficient populations, about 1 in 4000  neonates  has congenital hypothyroidism, usually because of thyroid  dysplasia.  Prompt  correction  with thyroid hormone is  essential  to  avoid permanent mental retardation.

 

Thyroid hormone affects proper development of the central nervous system,  particularly  its myelination, a process  that  is  very active   in   the  perinatal  period.    To   detect   congenital hypothyroidism  and  initiate  rapid  treatment,  most  developed countries conduct universal screening of neonates with blood spot TSH  taken on filter papers, or occasionally with blood  spot  T4 followed by TSH.

 

While  screening in developed countries is directed at  detecting neonates  with TSH elevations which are 20 mlU/ld whole blood  or higher,  the  availability  of TSH assays sensitive  to  5  mlU/l

permits detection of mild elevations above normal.  This  permits detection  of  transient  hyperthyrotopinemia.   To  be   broadly applicable in a population, the screening must be universal,  and not  omit  children born in remote or  impoverished  areas.   For countries  and  regions that already have a system  of  universal neonatal screening with a sensitive TSH assay in place, the  data can  be  examined  and  transient  iodine  deficiency  recognized usually without further surveying.

 

Feasibility

Serum  TSH  is  widely used in the field  of  thyroidology  as  a sensitive  marker  for both hypothyroidism  and  hyperthyroidism.  Methods  for  determining TSH concentrations from  either   dried whole  blood  spots  on  filter paper  or  from  serum,  as  well established  and  widely available.  Typically, a  few  drops  of whole  blood  are collected on filter paper from the cord  or  by prick of te heel or other site.

 

It  is essential that sterile equipment be used,  either  lancets for blood spot collection or needles and syringes for  collecting whole  blood  with  which  the  serum  is  separated.    Standard procedures  for handling blood products or  objects  contaminated with  blood should be followed.  The risk of contracting  HIV  or hepatitis infection from dried blood spots is extremely low.

 

Blood  can be taken either from the cord at delivery or by  heel-prick  after birth (usually after 72 hours).   Some  experimental data  suggest normal values for cord blood are higher than  those for heel prick blood.  Blood spots, once dried, are stable.  They can be stored in plastic bag and transported even through  normal postal systems and are usually for up to six weeks.

 

It  must  be  emphasized that the primary  purpose  of  screening programmes is to detect congenital hypothyroidism, and its use as an  indicator of iodine nutrition will be a spin-off.  Hence  the only additional cost will be for data analysis. 

 

It is not recommended that a neonatal screening programme be  set up solely to assess community iodine deficiency.  Less  expensive means for obtaining this inforamtion exist.

 

TSH  screening  is inappropriate for developing  countries  where health  budgets  are  low.  In such  countries,  mortality  among children  under five is high due to nutritional deficiencies  and infectious  diseases,  and screening  programmes  for  congenital hypothyroidism are not cost effective.

 

Performance

A variety of kits for measuring TSH are available commercially in developed countries.  Most have been carefully standardized,  and perform  adequately.  Assays that utilize monoclonal  antibodies,

which can detect TSH as low as 5 mlU/l in whole blood spots,  are more useful for recognizing iodine deficiency.

 

Interpretation

Permanent  sporadic  congenital  hypothyroidism,  with  extremely elevated  neonatal TSH, occurs in approximately 1 of 4000  births in  iodine-sufficient countries.  Other than infrequent cases  of goitrogen  exposure,  iodine deficiency is the  only  significant factor to increase this incidence.

 

The  increase in the number of neonates with moderately  elevated TSH concentrations (above 5 mlU/l whole blood) is proportional to the  degree of iodine deficiency.  It may be higher than  40%  in severe endemic areas.

 

Interpretation  is complicated when antiseptics containing  beta-iodine,  such  as  povidone iodine (Betadine TM),  are  used  for cleaning  the  perineum prior to delivery or even  the  umbilical area  of  the  baby.  Beta-iodine increases  TSH  levels  in  the neonate in both cord blood and heel-prick specimens.

 

Thyroglobulin (Tg)

Thyroglobulin  is  the  most abundant  protein  of  the  thyroid, providing  the matrix for thyroid hormone  synthesis.   Normally, small  amounts  are secreted or leak from the  thyroid  into  the circulation.  When the thyroid is hyperplastic  or injured,  much larger amounts are released.

 

The  thyroid  hyperplasia  of  iodine  deficiency  is   regularly associated  with increased serum Tg levels.  In this setting,  it refelects  iodine  nutrition over a period of  months  or  years.  This  contrasts to urinary iodine concentration,  which  assesses more immediate iodine intake.

 

Several studies have shown a good correlation with other  markers of  iodine  deficiency,  particularly  goitre.   The   laboratory technique  is similar to that for TSH and othe immunoassays.   It has  been  successfully  applied to blood spots  (33),  but  this particular application has not yet been developed commercially or studied further.

 

Survey methods

Overview

This book has so far dealt wth what should be measured, i.e.  the indicators of process and impact.  This chapter describes how  to apply these indicators in the field.

 

First, it covers methodologies for monitoring the process of salt iodization  alone.  Then it deals with monitoring and  evaluating the impact of salt iodization on target communities. In practice, during  surveys  at schools or in households, both salt  and  the impact indicators can be assessed at the same time (iodine status assessment).

 

Attention  to survey methods is important.  It will help both  to ensure  that  subjects  who are surveyed  or  samples  which  are collected  are representative of the study population,  and  that the surveys are carried out as efficiently as possible.

 

Salt monitoring

An IDD control programme based on salt iodization clearly  cannot succeed unless all salt for human consumption is being adequately iodized.   Therefore the most important thing to monitor  is  the salt itself, and the most important place to monitor it is at the site of production.

 

Monitoring iodine content at site of production

Salt  monitoring at the site of production is the  responsibility of  the  salt producer. It should be done by titration,  or  with rapid  test  kits provided they are backed up  by  titration.   A modified   Lot  Quality  Assurance  Sampling  (LQAS)  scheme   is recommended for implementation by producers (34).

 

Government food inspectors or health inspectors should carry  out periodic visits to salt production facilities to check on the in-house  quality  control  mechanisms.  They  should  also  collect samples for titration.

 

Monitoring iodine content at port of entry

Large  producers should certify that the salt which they  produce is iodized within a specified range.  Such producers should  seek certification    by    the   International    Organization    for Standardization  (International Standard ISO 9000 series)  as  an added guarantee that their salt is satisfactory iodized.

 

At the actual point of entry, customs officers can  realistically be expected to check documentation on large consignments of salt, and  visibly  inspect  all  imports to check  that  the  salt  is suitably packed and labelled.  Each consignments should be tested with  a  rapid test kit, accepting that this is not any  kind  of representative  sampling.   Suspect salt should be  held  at  the border.   However, it should be noted that salt may  be  imported for  industrial  purposes and is then not covered  by  iodization regulations.

 

Establishing  titration laboratories at points of entry for  salt would  appear  to be an attractive option, but  is  difficult  to implement  in practice.  Unloading bags from a lorry  or  railway wagon to check a consignment thoroughly is difficult, and only  a few easily accessible bags can be tested.  Staff would have to be specially recruited and laboratories established at  considerable expense.

 

Monitoring salt at the point of final packing

In countries where salt is repacked into small packets (500 g,  1 or  2 kg), samples from each consignment should be collected  for titration to ensure that the salt is adequately iodized.

 

Monitoring salt at the wholesale and retail levels

In   many   countries,  health  inspectors  carry   out   regular inspections of wholesale and ratail premises to ensure sompliance with food regulations.  During these inspections, samples of food may  be  collected  for  laboratory  testing.   Such  inspections therefore  provide an ideal opportunity for checking the salt  on sale, testing it with rapid test kits, and collecting samples for titration.  All salt samples should be carefully labelled  before dispatch to the laboratory.

 

The  results  of  formal salt monitoring should  be  provided  to producers.   Where  a  specific producer  consistently  fails  to comply, appropriate legal steps should be taken.

 

Monitoring salt at the community level

Salt  monitoring,  using test kits, should be  conducted  at  the community  level to ensure that only iodized salt is on  sale  to the  public.  This should be carried out by environmental  health workers,  village or community health workers, or  others.   Salt samples  should  be  collected  at  the  household  level  during periodic surveys to evaluate coverage (described below).

 

Iodine status assessment

Iondine  status assessment requires conducting a  cross-sectional survey   of  a  representative  sample  of  the   entire   target population.    The  recommended  survey  method   is   multistage "proportionate  to population size" (PPS) cluster sampling  (35).  This method has been in use for many years for the evaluation  of immunization  (EPI)  coverage, and can be applied to  many  other health  indicators.  The target population for the survey  should be  either  school-aged children or women  of  childbearing  age.  Surveys should be either school-based or household-based.

 

These  notes  are intended as a general guide to  the  principles underlying  the conduct of such surveys.  Surveys are  expensive, and  the  issues of sample size and selection of  sites  must  be given very careful consideration.  It is recommended that  expert epidemiological  help be sought at any early stage in the  design of an IDD prevalence survey.

 

The  principal requirement for applying the PPS method is that  a listing  (sampling frame) is available of all the sampling  units and their respective populations.  For IDD surveys, the  sampling unit  should  be either communities or schools.   In  the  latter case,  a list of the enrolments (total number of pupils) of  each school is required.

 

This  sampling scheme ensures that larger communities or  schools are more likely to be selected than smaller ones.  Each  selected sampling  unit is one cluster.  In a defined  geographical  area, thirty  clusters should be studied altogether to ensure  a  valid prevalence  estimate;  examining  fewer  clusters  can  lead   to estimates  that  differ substantially from  the  true  prevalence (36).

 

If  a  complete listing of school enrolments  is  not  available, schools  should  be  selected  on  the  basis  of  simple  random sampling.   The  final result is then adjusted  by  weighing  the results obtained usig the number of students actually enrolled in the schools selected for the survey.

 

Within  each cluster, a specified number of school-aged  children or adult women are selected for study.  Each selected provides  a urine specimen and a sample of salt from their home.

 

While  the number of samples of each that should be collected  is somewhat  flexible,  thirty samples of both urine  and  salt  per cluster  are  generally recommended.  Selection of  at  least  30

samples  allows  for  inference at the  cluster  levelm  i.e.  it permits  looking  at  differences among clusters  and  giving  an indication  of localities where iodine deficiency may still be  a problem.

 

School-based or household-based surveys?

The  school-based PPS cluster sampling method is  recommended  as the  most  efficient  and practical approach  for  performing  an iodine status or an IDD prevalence survey.  However, school-based PPS   cluster   surveys  may  not  be   appropriate   under   all circumstances, as shown in Table 8.

 

Stratification

One  30-cluster  survey  is not  sufficient  for  all  countires, practically those with large populations or those that are spread over  a  wide  area.  For example, consider  a  country  that  is divided  into  two ecological zones - lowlands  and  mountains  - where  IDD  was  previously  only a  recognized  problem  in  the mountains.

 

In  this case, the ecological zones should be treated  separately and surveys carried out in each.  Frequently a country is divided into subnational units, such as regions or provinces, and each of these may form the basis for a survey.

 

           

 

Table 8:  Circumstances when school-based PPS cluster surveys may not be appropriate

 

Reason

Effect

Recommended action

Low  school

enrolment

or attendance

(below 50% of

target population).

 

Schoolchildren may

come from better off

families and are then

unrepresentative of

the general population

Either:  Compare

goitre prevalence in

children attending

school with that in

those who are not at

significant different

proceed with  school

surveys.

Or:   Survey   adult

women or school-aged

children in households.

 

School  feeding

schemes

(particularly if

specific

micronutrient

supplements

are included).

Iodine status of

schoolchildren is

better  than

that of the community

as a whole.   

Survey  adult  women

(les than  30  years

old) in households.

Low enrolment

or girls in

schools toward

(more than 25%

below that of

boys).

Survey is biased

towards boys,

while girls as future

mothers are the

most important target

group.

Survey adult women

(less than 30 years

old) in households,

or school-aged

children in house-

holds and schools.

Another

micronutrient

deficiency survey

at household

level is planned.

Resources are

unnecessarily

wasted on two

separate surveys.

Combine the two    

surveys (see 5.4).

 

 

Survey methodology

 

Thirty  clusters are selected from the overall sampling frame  by systematic  sampling.   The total population or  total  enrolment divided by 30 determines the sampling interval (K).  The starting point of the survey is chosen by selectig a random number between 1 and K. 

 

In   a  school  survey, the thirty children  selected  for  urine collection should be chosen by systematic random sampling.   Only children  between the ages of 6 and 12 years inclusive should  be selected.

 

Salt  samples should also be collected for tiration at  the  same time  as  the IDD prevalence survey is performed.   If  possible, advance notice should be given so that the same children selected for  urine  collection  may bring salt to school on  the  day  in question.   If  advance  notice is not given,  ten  salt  samples should be collected in households in the nearest village to  theschool.

 

In a household survey, the team should identify the centre of the chosen  community  and  there spin a bottle to  choose  in  which direction  households should be selected.  Each house  should  be

visited  acording  to the direction the bottle is  pointing,  and either a women or a child selected in each household (maximum one per household) until the target number is reached.

 

 

Combined micronutrient deficiency surveys

IDD  prevalence  surveys may be efficiently combined  with  those aimed   at  assessing  the  prevalence  of  other   micronutrient deficiencies,  such  as  vitamin A  and  iron,  or  indeed  other

cluster surveys.  The recommended methodology for such surveys is also PPS cluster sampling.

 

The  sampling  units should be communities,  not  schools,  since these surveys take place in households in order to identify women and young children - the most vulnerable groups.

 

The  simplest  way of including an IDD component  is  to  collect urine  for iodine estimation from the same women or children  who are selected for collection of blood for assessment of vitamin  A and/or iron status, and to ask for a household salt sample at the same  time.   Alternatively, the nearest school to  the  selected community  should  be  visited and  urine  samples  collected  as outlined above.

 

 

IDD surveys in areas with no prevalence data

When  attempting  to answer the question  "does  IDD  occur?", the selection  of  schools  or communities for  surveying  should  be purposive, i.e. on the basis of IDD being suspected or  predicted in  that  particular  location.  Factors which may  lead  to  the suspicion  that IDD occurs in a particular area are  outlined  in Chapter  1.  The most useful type of survey for this  purpose  is

usually primary-school based.

 

Goitre  palpation  of each subject takes very little  time.   The examination of a statistically representative number of  children will  provide  a good picture of the overall IDD  status  in  the area, and will allow a reliable assessmet of goitre rates.   This is  particularly  important  if no  estimate  of  overall  goitre prevalence is available.

 

It  is  recommended that at least 200 children be examined  in  a given school, of the entire enrolment if this is a lower  number.  For  instance, assessment of total goitre prevalence in a  school of  600  pupils  -  with 95% confidence  and  the  same  relative precision  -  requires  examining 83 children  if  the  estimated overall  prevalence  is  50%,  but 234  children  if  the  latter percentage  is 20%.  In addition, at least 30 childen  should  be selected for urine collection in any school.

 

Sentinel surveillance

Large-scale, representative cross-sectional surveys are generally toos  costly  to  be  used  as  an  instrument  for  the  regular monitoring of IDD control. To assess the change in iodine  status of a defined population over time, the method of monitoring which has  proved most practical is that done through the selection  of sentinel  districts.  Such districts are chosen on the  basis  of their  being remote and being affected by moderate or severe  IDD prior to the implementation of the IDD control programmes.

 

In  each selection district, at least three rural schools  should be chosen at random for surveying.  An urban area should also  be included  to act as a control, and again at least  three  schools should be selected.

 

In  each  selection school in the sentinel districts,  urine  and household salt samples should be collected as outlined above.  If resources are limited, the number of urine samples collected  per school  may be reduced to a total of at least 60 samples  in  the district as a whole, with 20 from each school.

 

Requirement involve deriving a measure of central tendency and  a measure   of   variability  or  spread   of   the   distribution.  Unfortunately, many IDD parameters are not normally  distributed. 

Rather, the results may be highly skewed in one direction.

 

For  example, the distribution of both urinary iodine and  tyroid size  values  are  typically  skewed  to  the  right  (positively skewed).   The upper tail of the distribution is longer than  the lower  tail.   In  such  cases, the use  of  means  and  standard deviations  to  summarize  the data is  inappropriate,  and  non-parametric  methods  should  be used  to  summarize  and  compare distributions.

 

The median (which is simplythe middle value of the  distribution) is  usead as the measure of central tendency.  The median is  the same  thing  as  the 50th percentile.  Half the  results  in  the distribution  are  above the median and half are  below.   It  is equidistant from either extreme.

 

A  useful  way  of describing a spread of  values  which  is  not normally  distributed involves the use of  selected  percentiles.  The  value  of the 20th and 80th percentiles  (first  and  fourth quintiles) would be suitable, and would give a sense of shape  to the  distribution  of  values.  However, it  has  been  customary practice  in  giving the results of IDD surveys  to  use  cut-off points to delineate the lower trail of the distribution.

 

For example, in a frequency distributio of urinary iodine values, it  is  helpful to indicate the number and proportion  below  set values (typically 100, 50 and 20 ug/l).  After iodine prophylaxis

has  been  introduced,  it may also be helpful  to  indicate  the proportion  of values above a particularly high level  (e.g.  500 ug/l).

 

It  is important not to overinterpret the results obtained.   For example,  it is a common fallacy to say that all children with  a spot urine iodine value below 100 ug/l are iodine deficient.   If the edian is 100 ug/l, then by definition half of the values will be  below  this level.  Individual spot urine iodine  values  are likely to be highly variable over time.

 

It  should be noted that in carrying out a survey, only a  sample of  individuals is examined - not the entire  population.   There will  therefore inevitably be a degree of sampling error  in  the results  obtained.  This is decreased - but not eliminated  -  by increasing the sample size, but this also increases cost.

 

The  use  of confidence intervals gives an idea of the  range  in which  the true population value is likely to  lie.   Ninety-five percent confidence intervals can be calculated for a median,  and should be quoted alongside the value itself.

 

In compiling overall results of IDD surveys, e.g. at the national level, it is important not to simply take averages of subnational data.   By so doing, the overall result obtained may  be  biased.  Rather, the following guidelines are useful:

 

*  Results from prevalence surveys in different regions should be weighted  according  to population size, before  combining  them.  For  example, goitre prevalence data should be adjusted by  the

size  of the total study population.  The total enrolment of  all schools  in  the region, or the total population of  the  region, should be used to make this adjustment.

 

*   Urinary  iodine values and thyroid  volumes  from  ultrasound should  be treated in a similar way.  (These are  both  numerical variables, as compared to presence or absence of goitre, which is

a categorical variable).

 

*   Results from sentinel data are not nationally  representative data,  and therefore should not be presented as  such.   Instead, the  median  of  medians from each sentinel  district  should  be presented  as the "overall median urinary iodine from x  sentinel districts".

 

 

Indicators of the sustainable elimination of IDD

In  considering  whether the sustainable  elimination  of  iodine deficiency  as  a public health problem has  been  achieved,  the following criteria should be met (see also Table 9).

 

With  regard to salt iodization, availability and consumption  of adequately  iodized  salt (>15 ppm iodine)  must  be  guaranteed.  This  is demonstrated by its use by more than 90% of  households.

Preconditions  for  the use of this vehicle for  eliminating  IDD are:

 

*   Local  production  and/or importation of iodized  salt  in  a quantity that is sufficient to satisfy the potential human demand (about 4-5 kg/person/year);

 

*    95% of salt for human consumption must be iodized  according to government standards for iodine content, at the production  or important levels;

 

*   The percentage of food-grade salt with iodine content  of  at least  15 ppm, in a representative sample of households, must  be equal to or greater than 90%; and

 

*   Iodine estiamtion at the point of production or  importation, and  at  the wholesale and retail levels, must be  determined  by titration; at the household level, it may be determined by either titration or certified kits.

 

 

With regard to the population's iodine status:

*  The median urinary concentration should be at least 100  ug/l, with less than 20% of values below 50 ug/l; and

 

*  The most recent monitoring data (national or regional)  should have been collected in the last two years.

 

At  least eight out of the following ten programmatic  indicators should occur:

 

*  An effective, functional national body (council or  committee) resposible  to the government for the national programme for  the elimination  of  IDD (this council should  be  multidisciplinary, involving  the relevant field of nutrition, medicine,  education, the  salt  industry, the media, and consumers,  with  a  chairman appoited by the Ministry of Health);

 

*  Evidence of political commitment to universal salt  iodization and the elimination of IDD.

 

*   Appointment  of a responsible executive officer for  the  IDD eliminatio programme.

 

*  Legislation or regulations on universal salt iodization (while ideally  regulations  should cover both  human  and  agricultural salt,  if  the latter is not covered this  does  not  necessarily preclude a country from being certified as IDD-free);

 

*   Commitment to assessment and reassessment of progress in  the elimination  of IDD, with access to laboratories able to  provide accurate data on salt and urinary iodine;

 

*  A programme of public education and social mobilization on the importance of IDD nd the consumption of iodized salt;

 

*   Regular  data  on  salt iodine at  the  factory,  retail  and household levels;

 

*  Regular laboratory data on urinary data iodine in  school-aged children, with appropriate sampling for higher risk areas;

 

*   Cooperation from the salt industry in maintenance of  quality control; and

 

*   A  database for recording of results  or  regular  monitoring procedures, particularly for salt iodine, urinary iodine and,  if available, neonatal TSH, with mandatory public reporting.

 

 

Table  9:   Summary of criteria for monitoring  progress

towards sustainable elimination of IDD

as a public health problem

 

Indicators

Goals

Salt iodization    

Proportion of households

using adequately iodized salt

>90%*

Urinary iodine

Proportion below 100 ug/l

Proportion below 50 ug/l

<50%*

<20%*

Programmatic indicators

Attainment of the indicators

specified on the opposite page

At least

8 of the 10

 

*These goals are expressed as percentage of population.

 

Acceptable iodine status

 

In addition to eliminating IDD, acceptable iodine nutrition  will be achieved if median urinary iodine is not greater than 300 ug/l (see also Chapter 2.1).

 

 

Partnership evaluatiion

There is a need for periodic review of the entire programme, with the   help  of  WHO,  UNICEF,  ICCIDD,  and   other   appropriate organizations.   Such  external evaluation  provides  independent assessment,  which is extremely helpful to a  country  programme. Partnership   evaluation   can  also  provide   programmes   with reassurance of their performance and effectiveness.

 

 

References

1.   Bleichrodt N, Born MA.  Meta-analysis of research on  iodine and its relationship to cognitive development.  In: Stanbury  JB, ed. The damaged brain of iodine deficiency.  New York,  Cognizant Communication Corporation, 1994:195-200.

 

2.    WHO,  UNICEF,  ICCIDD.   Indicators  for  assessing  iodine deficiency  disorders and their control through salt  iodization.  Geneva,  World  Health Organization, 1994  (unpublished  document WHO/NUT/94.6;  available on request from Department of  Nutrition for  Health  and  Development, World  Health  Organization,  1211 Geneva 27, Switzerland).

 

3.   Last JM, ed. Dictionary of epidemiology, 3rd ed.  New  York, International Epidemiology Association, Oxford University, 1995.

 

4.   WHO, UNICEF, ICCIDD.  Recommended iodine levels in salt  and guidelines  for  monitoring  their  adequacy  and  effectiveness.  Geneva,  World  Health Organization,  1996  (upublished  document WHO/NUT/96.13; available on request from Department of  Nutrition for  Health  and  Development, World  Health  Organization,  1211 Geneva 27, Switzerland).

 

5.    Hetzel  BS.  Iodine deficiency disorders  (IDD)  and  their eradication.  Lancet, 1983, 2:1126-1129.

 

6.   Delong  GR.   Observations  on  the  neurology  of   endemic cretinism.  In: Delong GR, Robbins J, Condliffe PG,  eds.  Iodine and the brain. New York, Plenum Press, 1989:231ff.

 

7.   Delange  F. Endemic critinis. In: Braverman LE,  Utiger  RD, eds.  The  thyroid.  A fundamental and  clinical  text.  8th  ed. Philadelphia, Lippincott, 2000:743-754.

 

8.   Hetzel  BS, Pandav C. SOS for a billion.   The  conquest  of iodine deficiency disorders, 2nd ed. New Delhi, Oxford University Press, 1996.

 

9.  Dunn JT. What's happening to our iodine? Journal of  Clinical Endocrinology and Metabolism, 1998, 83:3398-3400.

 

10.   Delange  F.  The disorders induced  by  iodine  deficiency. Thyroid, 1994, 4 (1):107=128.

 

11.    Pandav  CS,  Rao  AR.   Iodine  deficiency  disorders   in livestock.  Ecology and economics.  New Delhi, Oxford  University Press, 1997.

 

12.   MI,  WHO, ICCIDD, USAID, PAMM, UNICEF.  Houston R  et  al., eds.   Assessing  country progress in universal  salt  iodization programs.  Iodized salt program assessment tools (ISPAT). Ottawa, Micronutrient Initiative Publications, 1999.

 

13.  WHO, UNICEF, ICCIDD.  Delange F et al., eds. Elimination  of iodine  deficiency disorders in Central and Eastern  Europe,  the Commonwealth  of  Independent  States,  and  the  Baltic  States.  Processing of a Conference held in Munich, Germany, 3-6 September 1997.   Geneva,  World  Health  Organization,  1998  (unpublished document WHO/EURO/NUT/96.1; available on request from  Department of   Nutrition   for  Health  and   Development,   World   Health Organization, 1211 Geneva 27, Switzerland.

 

14.  WHO, UNICEF, ICCIDD.  Progress towards elimination of iodine deficiency  disorders.  Geneva, World Health  Organization,  1999 (unpublished  document  WHO/NHD/99.4; available on  request  from Department of Nutritioin for Health and Development, World Health Organization, 1211 Geneva 27, Switzerland.

 

15.  WHO, UNICEF, ICCIDD.  Global prevalence of iodine deficiency disorders.  Geneva, World Health Organization, 1993 (MDIS Working Paper # 1).

 

16.   Evaluation  of  certain food  additives  and  contaminants.  Thirty-seventh  Report of the Joint FAO/WHO Expert  Committee  on Food  Additives.   Geneva, World Health Organization,  1991  (WHO Technical Report Series, No. 806).

 

17.   NI,  ICCIDD,  UNICEF, WHO.  Manner V,  Dunn  J,  eds.  Salt iodization  for  the  elimination  of  iodine  deficiency.    The Netherlands, ICCIDD, 1995.

 

18.  Diosady LL et al.  Stability of iodine in iodized salt  used for  coorection  of iodine-deficiency disorders,  II.   Food  and Nutrition   Bulletin,  1998,  19:240-250  (The   United   Nations University).

 

19.  WHO, UNICEF, ICCIDD.  Recommended iodine levels in salt  and guidelines  for  monitoring  their  adequacy  and  effectiveness.  Geneva,  World  Health Organization, 1996  (unpublished  document WHO/NUT/96.13; available on request from Department of  Nutrition for  Health  and  Development, World  Health  Organization,  1211 Geneva 27, Switzerland).

 

20.   Pandav  C  et al.  Field validation  of  salt  iodine  spot testing  kit using multiple observes to assess the  available  of iodized  salt: experience from India.  In: Geertman RM, ed.  Salt 2000.  Volume  2.8th World Salt Symposium. The  Hague,  8-11  May 2000. Amsterdam, Elsevier, 2000: 1039-1043.

 

21.   Delange F, de Benoist B, Alnwick D et al. Risks of  iodine-induced  hyperthyroidism  after correction of  iodine  deficiency disorders by iodized salt. Thyroid, 1999, (6):545-556.

 

22.   Rendl  J  et al.  Rapid urinary  iodide  test.  Journal  of Clinical Endocrinology and Metabolism, 1998, 83:1007-1012.

 

23.   Nathan R.  Food fortification legislation and  regulations, 2nd ed. Atlanta, PAMM, 1995.

 

24.   Quality  assurance,  monitoring  and  enforcement  of  slat iodization  programs.  Report of a Training  Workshop.  Blantyre, Malawi 9-13 March 1998. Atlanta, PAMM, 1998.

 

25.   UNICEF,  ICCIDD, PAMM, WHO, MI.  Sullivan KM et  al.,  eds. Monitoring  universal salt iodization programmes. Atlanta,  PAMM, MI, ICCIDD, 1995.

 

26.   Pino S, Fang SL, Braverman LE.  Ammonium persulfate: a  new and  safe  method  for  measuring  urinary  iodine  by   ammonium persulfate  oxidation.  Experimental and Clinical  Endocrinology: Diabetes, 1998, 106 (Suppl. 3): S22-S27.

 

27.   Dunn JT et al. Methods of measuring iodine in  urine.   The Netherlands, ICCIDD, 1993.

 

28.   Dunn JT, Myers HE, Dunn AD.  Simple methods  for  assessing urinary iodine, including preliminary description of a new  rapid technique  ("Fast B").  Experimental and Clinical  Endocrinology: Diabetes, 1997, 106 (Suppl. 3): S10-S12.

 

29.   Ohashi T et al. A newly developed method for  determination of urinary iodine. Clinical Chemistry, 2000, 46: 529-536.

 

30.    Stanbury  JB  et  al.    Iodine-induced   hyperthyroidism, occurrence and epidemiology.  Thyroid, 8 (1): 83-100.

 

31.   Todd CH et al.  Increase in thyrotoxicosis associated  with iodine supplements in Zimbabwe. Lancet, 1995, 346:1523-1564.

 

32.   Delange  F, Bourdoux P, Ermans AM. Transient  disorders  of thyroid  function and regulation in preterm infants. In:  Delange F,  Fisher D, Malvaux P, eds. Pediatric thyroidology.  Basel,  S.

Karger, 1985:369-393.

 

33.   Missler  U, Gutekunst R, Wood WG. Thyroglobulin is  a  more sensitive  indicator  of  iodine  deficiency  than   thyrotropin: development   and  evaluation  of  dry  blood  spot  assays   for thyrotropin  and thyroglobulin in  iodine-deficient  geographical areas.   European  Journal  of Clinical  Chemistry  and  Clinical Biochemistry, 1994, 32:137-143.

 

34.   UNICEF,  PAMM, MI, ICCIDD, WHO. Sullivan KM  et  al.,  eds. Monitoring universal salt iodization programmes, 1995.

 

35.  Sullivan KM, May S Maberly G. Urinary iodine  assessment:  a manual  on survey and laboratory methods, 2nd ed.  UNICEF,  PAMM, 2000.

 

36.  Binkin NJ et al. Rapid nutrition surveys: how many  clusters are enough? Disasters, 1992, 16:97-103.

 

37.   Dean  AG  et al. Epi Info, Version 6:  a  word  processing, database,   and   statistics   program   for   epidemiology    on microcomputers.    Atlanta,  Centres  for  Disease  Control   and Prevention, 1994.

 

 

Click to continue  ..

 

TOP

 

BACK